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Lighthouse
● Lighthouse is an open-source, automated tool for improving the quality of web 

pages.
● It has audits for:

○ Performance
○ Accessibility 無障礙
○ Progressive Web Apps
○ Best Practices
○ SEO (use Search Console Tools would be better)

and it is continually updated.

● Give Lighthouse an URL to audit, it runs a series of audits against the page, 
and then it generates a report on how well the page did.

● The report offers opportunities for optimisation and estimated savings.



RAIL (1/2)

● RAIL is a user-centric performance model that provides a structure for 
thinking about performance.

● RAIL breaks down the user's experience into key actions and combine with 
different  web app life cycle: Response, Animation, Idle, and Load. Each of 
them has its own performance goal.

100 ms 60 fps, 
10~12 ms 50 ms 1 s



RAIL (2/2)

● User click UI and expect the result, e.g., animation start, at most 100 ms.
● Animation may take 10 ~ 12 ms and 16 ms per frame (smooth: 60 frames in 1 s). 
● Animation end and idle for the next interaction, at most 50 ms; or deliver another 

feedback, at most 100 ms.



Metrics
These metrics measure the web app's performance across a number of dimension 
based on RAIL.

● Perceived Load Speed
○ First Contentful Paint (FCP)
○ Largest Contentful Paint (LCP)
○ Speed Index

● Load Responsiveness
○ First Input Delay (FID)
○ Time to Interactive (TTI)
○ Total Blocking Time (TBT)

● Visual Stability 
○ Cumulative Layout Shift (CLS)



Perceived Load Speed
First Contentful Paint

Largest Contentful Paint
Speed Index



FCP LCP

First Contentful Paint, Largest Contentful Paint



Speed Index
Calculate the speed index 

= 

0% 10% 10% 10% 10% 10% 10% 55% 90% 100%

0% 10% 20% 30% 40% 50% 65% 78% 95% 100%

Page 1  Speed index: 6500

Page 2  Speed index: 5000

Image source

https://blog.dareboost.com/en/2018/02/speed-index-web-performance/


Load Responsiveness
First Input Delay

Time to Interactive 
Total Blocking Time 
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Total Blocking Time
Total blocking time (> 50ms) between FCP and TTI.



Visual Stability 
Cumulative Layout Shift 



video source

https://docs.google.com/file/d/1XqFZHi9JGTnWvPg6vyCAQ6KHvwwsnnsJ/preview
https://web.dev/cls/


After the search result 
load complete...

XYZ

Ad shows, and the 
search result block 
moves downward...

XYZ
CLS  
= impact fraction * distance fraction
= ⅔ * ⅓ = 2/9 ~ 0.22

● impact fraction 
= impact area / whole area 
= ⅔

● distance fraction 
= the greatest distance has moved
= ⅓  

   

Cumulative Layout Shift



Goals
Key performance metrics related to user experience. 

Metrics Good Needs Improvement Bad

First Contentful Paint (FCP) < 1 s (UDSO: 4.3 s)

Largest Contentful Paint (LCP) < 2.5 s 2.5 ~ 4 s > 4s (UDSO: 4.9 s)

First Input Delay (FID) < 100 ms 100 ~ 300 ms > 300ms

Time to Interactive (TTI) < 5 s (UDSO: 5.8 s)

Total Blocking Time (TBT) < 300 ms 300 ~ 600 ms (UDSO: 590 ms) > 600 ms

Cumulative Layout Shift (CLS) < 0.1 0.1 ~ 0.25 > 0.25 (UDSO: 0.311)

Speed Index < 4.4 s 4.4 ~ 5.8 s (UDSO: 5.2 s) > 5.8 s



How does Lighthouse monitor DDD?
● Test specific pages (current: dashboard, UDSO, so report, help) by using  

Lighthouse and Puppeteer. 
● Generate reports at 11 AM every Friday by Jenkins.
● Improve UI performance based on the metrics and suggestions from the 

reports.



Performance Report
● Metrics: The metrics measure the web app's performance across a number of 

dimension, including FCP, LCP, FID, TTI, TBT and CLS.
● Opportunities: The suggestions can help the page load faster. List the 

estimated savings behind the Opportunities.
● Diagnostics: More information about the performance of the application, e.g., 

remove unused files.



Lighthouse Performance Report

https://adc.github.trendmicro.com/pages/summer-tang/ddd-fe-performance-testing/

https://adc.github.trendmicro.com/pages/summer-tang/ddd-fe-performance-testing/


Recommendation (1/2)

# Suggestions Impact Metrics Solution

1

Avoid an excessive DOM size
A large DOM will increase memory 
usage, cause longer style 
calculations, and produce costly 
layout reflows.

FCP, LCP, TTI

● Create DOM nodes only when needed, 
and destroy nodes when they're no 
longer needed.

● Minimize unnecessary re-renders.👍🏻
● Simplifying CSS selectors if cannot 

reduce DOM nodes.👍🏻

2
Minimize main-thread work
Reducing the time spent parsing, 
compiling and executing JS.

TTI, TBT

● Reduce DOM nodes and simplifying 
CSS rules to lessen the calculation 
burden. 👍🏻

● Use web worker instead of main thread 
mainly. 👍🏻

● Split bundled js files by page.

👍🏻 Easy to apply in DDD



Recommendation (2/2)

# Suggestions Impact Metrics Solution

3
Avoid large layout shifts
PbAgGrid move from topmost and 
then move 334px downward.

CLS Re-allocate space for header component or 
render PbAgGrid later.

4 Serve static assets with an 
efficient cache policy FCP, LCP Set HTTP caching policy properly.



Lighthouse optimization is not a one-time task. 
Ongoing optimization is the new norm.

 
What might score 100% today, will not score 100% 

tomorrow.

Quote from Polly Pospelova’s sharing in
How To Get a 100% Lighthouse Performance Score

https://www.slideshare.net/PollyPospelova/how-to-get-a-100-lighthouse-performance-score

