Lighthouse

A User-Centric Performance Testing Tool

Agenda

Lighthouse

RAIL

Metrics

Goals

How does Lighthouse monitor DDD?
Recommendation

Lighthouse

e Lighthouse is an open-source, automated tool for improving the quality of web
pages.

e It has audits for:

Performance

Accessibility #EfERE

Progressive Web Apps

Best Practices
SEO (use Search Console Tools would be better)

O O O O O

and it is continually updated.

e Give Lighthouse an URL to audit, it runs a series of audits against the page,
and then it generates a report on how well the page did.
e The report offers opportunities for optimisation and estimated savings.

RAIL (1/2)

3
& °

100 ms 60 fps,
10~12 ms 50 ms 1s

e RAIL is a user-centric performance model that provides a structure for

thinking about performance.
e RAIL breaks down the user's experience into key actions and combine with

different web app life cycle: Response, Animation, Idle, and Load. Each of
them has its own performance goal.

RAIL (2/2)

Animation Animation User perceives
NERS ends animation end

u
60fps

User click Ul and expect the result, e.g., animation start, at most 100 ms.
Animation may take 10 ~ 12 ms and 16 ms per frame (smooth: 60 frames in 1 s).
e Animation end and idle for the next interaction, at most 50 ms; or deliver another

feedback, at most 100 ms.

Metrics

These metrics measure the web app's performance across a number of dimension
based on RAIL.

e Perceived Load Speed
o First Contentful Paint (FCP)
o Largest Contentful Paint (LCP)
o Speed Index
e Load Responsiveness
o First Input Delay (FID)
o Time to Interactive (TTI)
o Total Blocking Time (TBT)

e Visual Stability
o Cumulative Layout Shift (CLS)

<7

Perceived Load Speed

First Contentful Paint
Largest Contentful Paint
Speed Index

First Contentful Paint, Largest Contentful Paint

(

\

(

\

FCP

=19

Visual progress

Speed Index

Calculate the speed index

end 4%

= Speed Index = 1 —
pee nexfO —

end = end time in milliseconds
VC =% visually complete

Image source

Page 1 Speed index: 6500

o o s

Page 2 Speed index: 5000

TN o s oo [s ioow

https://blog.dareboost.com/en/2018/02/speed-index-web-performance/

=) C
(n)-C
©

Load Responsiveness

First Input Delay
Time to Interactive
Total Blocking Time

Time to Interactive, First Input Delay

TTI
FCP
s Styles are loaded and
Network Q . - browser can start to paint
Requests
Navigation ¥
Start
Main : . _
] L P
Thread . !

Network request

v

Sarggj:; first Browse‘r can
Main thread task ecaos | Srovsercan

FID first user input

. Browser is idle for 5+
* seconds

Total Blocking Time

Total blocking time (> 50ms) between FCP and TTI.

Main thread timeline (task durations)

155

250 90 35 30
: I I e B
l— L
Main thread timeline (task blocking time)
200 40
: | —
— T

105

A
Visual Stabillity

Cumulative Layout Shift

Order confirmation

You have selected 56Ggitems. Is this correct?

Yes, place my order

No, go back

video source

https://docs.google.com/file/d/1XqFZHi9JGTnWvPg6vyCAQ6KHvwwsnnsJ/preview
https://web.dev/cls/

Cumulative Layout Shift

———— ===

N\
*

~

=

—y

After the search result
load complete...

Ad shows, and the
search result block
moves downward...

= impact fraction * distance fraction

(LXYZ) qu\ p- CLS

=%*Y=2/9~0.22

impact fraction

= impact area / whole area

=%

distance fraction

= the greatest distance has moved
="

Goals

Key performance metrics related to user experience.

Metrics Good Needs Improvement Bad

First Contentful Paint (FCP) <1s (UDSO: 4.3 s)

Largest Contentful Paint (LCP) | <25s 25~4s >4s (UDSO:4.95s)
First Input Delay (FID) <100 ms 100 ~ 300 ms > 300ms

Time to Interactive (TTI) <5s (UDSO: 5.8 s)

Total Blocking Time (TBT) <300 ms 300 ~600 ms (UDSO: 590 ms) | > 600 ms

Cumulative Layout Shift (CLS) | <0.1 0.1~0.25 >0.25 (UDSO: 0.311)
Speed Index <44s 44~58s (UDSO:525s) >58s

How does Lighthouse monitor DDD?

e Test specific pages (current: dashboard, UDSO, so report, help) by using
Lighthouse and Puppeteer.

e Generate reports at 11 AM every Friday by Jenkins.

e Improve Ul performance based on the metrics and suggestions from the
reports.

Performance Report

e Metrics: The metrics measure the web app's performance across a number of
dimension, including FCP, LCP, FID, TTI, TBT and CLS.

e Opportunities: The suggestions can help the page load faster. List the
estimated savings behind the Opportunities.

e Diagnostics: More information about the performance of the application, e.g.,
remove unused files.

Lighthouse Performance Report

D

Performance Accessibility = Best Practices SEO Progressive
Web App
- 0-49 50-89 == 90-100
Performance
Metrics = =
A First Contentful Paint 35s Time to Interactive 3.7s
A Speed Index 41s @ Total Blocking Time 20 ms
A Largest Contentful Paint 35s @ Cumulative Layout Shift 0.036

Values are estimated and may vary. The performance score is calculated directly from these metrics. See calculator.

https://adc.qithub.trendmicro.com/pages/summer-tana/ddd-fe-performance-testina/

https://adc.github.trendmicro.com/pages/summer-tang/ddd-fe-performance-testing/

Recommendation (1/2)

| Suggestions

Avoid an excessive DOM size

Minimize main-thread work

Easy to apply in DDD

Impact Metrics

FCP, LCP, TTI

TTI, TBT

Solution

e Create DOM nodes only when needed,
and destroy nodes when they're no
longer needed.

Minimize unnecessary re-renders.

e Simplifying CSS selectors if cannot

reduce DOM nodes.

e Reduce DOM nodes and simplifying
CSS rules to lessen the calculation
burden.

Use web worker instead of main thread
mainly.

e Split bundled js files by page.

Recommendation (2/2)

| Suggestions

Avoid large layout shifts
3

Serve static assets with an
efficient cache policy

Impact Metrics

CLS

FCP, LCP

Solution

Re-allocate space for header component or
render PbAgGrid later.

Set HTTP caching policy properly.

Lighthouse optimization is not a one-time task.
Ongoing optimization is the new norm.

What might score 100% today, will not score 100%
tomorrow.

https://www.slideshare.net/PollyPospelova/how-to-get-a-100-lighthouse-performance-score

