
Lighthouse
A User-Centric Performance Testing Tool

Summer Tang
2020/09/11



Agenda
● Lighthouse
● RAIL
● Metrics
● Goals 
● How does Lighthouse monitor DDD?
● Recommendation



Lighthouse
● Lighthouse is an open-source, automated tool for improving the quality of web 

pages.
● It has audits for:

○ Performance
○ Accessibility 無障礙
○ Progressive Web Apps
○ Best Practices
○ SEO (use Search Console Tools would be better)

and it is continually updated.

● Give Lighthouse an URL to audit, it runs a series of audits against the page, 
and then it generates a report on how well the page did.

● The report offers opportunities for optimisation and estimated savings.



RAIL (1/2)

● RAIL is a user-centric performance model that provides a structure for 
thinking about performance.

● RAIL breaks down the user's experience into key actions and combine with 
different  web app life cycle: Response, Animation, Idle, and Load. Each of 
them has its own performance goal.

100 ms 60 fps, 
10~12 ms 50 ms 1 s



RAIL (2/2)

● User click UI and expect the result, e.g., animation start, at most 100 ms.
● Animation may take 10 ~ 12 ms and 16 ms per frame (smooth: 60 frames in 1 s). 
● Animation end and idle for the next interaction, at most 50 ms; or deliver another 

feedback, at most 100 ms.



Metrics
These metrics measure the web app's performance across a number of dimension 
based on RAIL.

● Perceived Load Speed
○ First Contentful Paint (FCP)
○ Largest Contentful Paint (LCP)
○ Speed Index

● Load Responsiveness
○ First Input Delay (FID)
○ Time to Interactive (TTI)
○ Total Blocking Time (TBT)

● Visual Stability 
○ Cumulative Layout Shift (CLS)



Perceived Load Speed
First Contentful Paint

Largest Contentful Paint
Speed Index



FCP LCP

First Contentful Paint, Largest Contentful Paint



Speed Index
Calculate the speed index 

= 

0% 10% 10% 10% 10% 10% 10% 55% 90% 100%

0% 10% 20% 30% 40% 50% 65% 78% 95% 100%

Page 1  Speed index: 6500

Page 2  Speed index: 5000

Image source

https://blog.dareboost.com/en/2018/02/speed-index-web-performance/


Load Responsiveness
First Input Delay

Time to Interactive 
Total Blocking Time 



Network 
Requests

Main 
Thread

Navigation 
Start

Network request

Main thread task

TTI

FCP
Styles are loaded and 
browser can start to paint

Browser 
receives first 
user input

Browser can 
respond to the 
first user inputFID

Quiet 
Window 

Browser is idle for 5+ 
seconds

Time to Interactive, First Input Delay



Total Blocking Time
Total blocking time (> 50ms) between FCP and TTI.



Visual Stability 
Cumulative Layout Shift 



video source

https://docs.google.com/file/d/1XqFZHi9JGTnWvPg6vyCAQ6KHvwwsnnsJ/preview
https://web.dev/cls/


After the search result 
load complete...

XYZ

Ad shows, and the 
search result block 
moves downward...

XYZ
CLS  
= impact fraction * distance fraction
= ⅔ * ⅓ = 2/9 ~ 0.22

● impact fraction 
= impact area / whole area 
= ⅔

● distance fraction 
= the greatest distance has moved
= ⅓  

   

Cumulative Layout Shift



Goals
Key performance metrics related to user experience. 

Metrics Good Needs Improvement Bad

First Contentful Paint (FCP) < 1 s (UDSO: 4.3 s)

Largest Contentful Paint (LCP) < 2.5 s 2.5 ~ 4 s > 4s (UDSO: 4.9 s)

First Input Delay (FID) < 100 ms 100 ~ 300 ms > 300ms

Time to Interactive (TTI) < 5 s (UDSO: 5.8 s)

Total Blocking Time (TBT) < 300 ms 300 ~ 600 ms (UDSO: 590 ms) > 600 ms

Cumulative Layout Shift (CLS) < 0.1 0.1 ~ 0.25 > 0.25 (UDSO: 0.311)

Speed Index < 4.4 s 4.4 ~ 5.8 s (UDSO: 5.2 s) > 5.8 s



How does Lighthouse monitor DDD?
● Test specific pages (current: dashboard, UDSO, so report, help) by using  

Lighthouse and Puppeteer. 
● Generate reports at 11 AM every Friday by Jenkins.
● Improve UI performance based on the metrics and suggestions from the 

reports.



Performance Report
● Metrics: The metrics measure the web app's performance across a number of 

dimension, including FCP, LCP, FID, TTI, TBT and CLS.
● Opportunities: The suggestions can help the page load faster. List the 

estimated savings behind the Opportunities.
● Diagnostics: More information about the performance of the application, e.g., 

remove unused files.



Lighthouse Performance Report

https://adc.github.trendmicro.com/pages/summer-tang/ddd-fe-performance-testing/

https://adc.github.trendmicro.com/pages/summer-tang/ddd-fe-performance-testing/


Recommendation (1/2)

# Suggestions Impact Metrics Solution

1

Avoid an excessive DOM size
A large DOM will increase memory 
usage, cause longer style 
calculations, and produce costly 
layout reflows.

FCP, LCP, TTI

● Create DOM nodes only when needed, 
and destroy nodes when they're no 
longer needed.

● Minimize unnecessary re-renders.👍🏻
● Simplifying CSS selectors if cannot 

reduce DOM nodes.👍🏻

2
Minimize main-thread work
Reducing the time spent parsing, 
compiling and executing JS.

TTI, TBT

● Reduce DOM nodes and simplifying 
CSS rules to lessen the calculation 
burden. 👍🏻

● Use web worker instead of main thread 
mainly. 👍🏻

● Split bundled js files by page.

👍🏻 Easy to apply in DDD



Recommendation (2/2)

# Suggestions Impact Metrics Solution

3
Avoid large layout shifts
PbAgGrid move from topmost and 
then move 334px downward.

CLS Re-allocate space for header component or 
render PbAgGrid later.

4 Serve static assets with an 
efficient cache policy FCP, LCP Set HTTP caching policy properly.



Lighthouse optimization is not a one-time task. 
Ongoing optimization is the new norm.

 
What might score 100% today, will not score 100% 

tomorrow.

Quote from Polly Pospelova’s sharing in
How To Get a 100% Lighthouse Performance Score

https://www.slideshare.net/PollyPospelova/how-to-get-a-100-lighthouse-performance-score

